GONet: A Semi-Supervised Deep Learning Approach For Traversability Estimation
نویسندگان
چکیده
We present semi-supervised deep learning approaches for traversability estimation from fisheye images. Our method, GONet, and the proposed extensions leverage Generative Adversarial Networks (GANs) to effectively predict whether the area seen in the input image(s) is safe for a robot to traverse. These methods are trained with many positive images of traversable places, but just a small set of negative images depicting blocked and unsafe areas. This makes the proposed methods practical. Positive examples can be collected easily by simply operating a robot through traversable spaces, while obtaining negative examples is time consuming, costly, and potentially dangerous. Through extensive experiments and several demonstrations, we show that the proposed traversability estimation approaches are robust and can generalize to unseen scenarios. Further, we demonstrate that our methods are memory efficient and fast, allowing for real-time operation on a mobile robot with single or stereo fisheye cameras. As part of our contributions, we open-source two new datasets for traversability estimation. These datasets are composed of approximately 24h of videos from more than 25 indoor environments. Our methods outperform baseline approaches for traversability estimation on these new datasets.
منابع مشابه
On the Importance of Stereo for Accurate Depth Estimation: An Efficient Semi-Supervised Deep Neural Network Approach
We revisit the problem of visual depth estimation in the context of autonomous vehicles. Despite the progress on monocular depth estimation in recent years, we show that the gap between monocular and stereo depth accuracy remains large—a particularly relevant result due to the prevalent reliance upon monocular cameras by vehicles that are expected to be self-driving. We argue that the challenge...
متن کاملCombining sequential deep learning and variational Bayes for semi-supervised inference
In the application of machine learning to time series, coarse labelling of the sequence is generally known. However, often a finer granularity of the annotations is sought for improved accuracy and resolution in signal analysis. With a focus on medical time series, this study employs a bidirectional LSTM autoencoder, t-SNE, and variational Bayesian estimation in order to provide labels with fin...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملSemi-supervised Learning with Deep Generative Models for Asset Failure Prediction
This work presents a novel semi-supervised learning approach for data-driven modeling of asset failures when health status is only partially known in historical data. We combine a generative model parameterized by deep neural networks with non-linear embedding technique. It allows us to build prognostic models with the limited amount of health status information for the precise prediction of fu...
متن کاملStructure-Aware and Temporally Coherent 3D Human Pose Estimation
Deep learning methods for 3D human pose estimation from RGB images require a huge amount of domain-specific labeled data for good in-the-wild performance. However, obtaining annotated 3D pose data requires a complex motion capture setup which is generally limited to controlled settings. We propose a semi-supervised learning method using a structure-aware loss function which is able to utilize a...
متن کامل